SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis.

نویسندگان

  • Ishwarya Soundappan
  • Tom Bennett
  • Nicholas Morffy
  • Yueyang Liang
  • John P Stanga
  • Amena Abbas
  • Ottoline Leyser
  • David C Nelson
چکیده

The plant hormones strigolactones and smoke-derived karrikins are butenolide signals that control distinct aspects of plant development. Perception of both molecules in Arabidopsis thaliana requires the F-box protein MORE AXILLARY GROWTH2 (MAX2). Recent studies suggest that the homologous SUPPRESSOR OF MAX2 1 (SMAX1) in Arabidopsis and DWARF53 (D53) in rice (Oryza sativa) are downstream targets of MAX2. Through an extensive analysis of loss-of-function mutants, we demonstrate that the Arabidopsis SMAX1-LIKE genes SMXL6, SMXL7, and SMXL8 are co-orthologs of rice D53 that promote shoot branching. SMXL7 is degraded rapidly after treatment with the synthetic strigolactone mixture rac-GR24. Like D53, SMXL7 degradation is MAX2- and D14-dependent and can be prevented by deletion of a putative P-loop. Loss of SMXL6,7,8 suppresses several other strigolactone-related phenotypes in max2, including increased auxin transport and PIN1 accumulation, and increased lateral root density. Although only SMAX1 regulates germination and hypocotyl elongation, SMAX1 and SMXL6,7,8 have complementary roles in the control of leaf morphology. Our data indicate that SMAX1 and SMXL6,7,8 repress karrikin and strigolactone signaling, respectively, and suggest that all MAX2-dependent growth effects are mediated by degradation of SMAX1/SMXL proteins. We propose that functional diversification within the SMXL family enabled responses to different butenolide signals through a shared regulatory mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strigolactones Regulate Plant Growth in Arabidopsis via Degradation of the DWARF53-Like Proteins SMXL6, 7, and 8.

Strigolactones (SLs) secreted from roots mediate symbiosis with arbuscular mycorrhizal fungi and can trigger germination of parasitic plants (reviewed in Al-Babili and Bouwmeester, 2015). SLs also influence shoot branching, root growth, and leaf shape (reviewed inWilliams and Yamaguchi, 2015). In SL signaling in rice (Oryza sativa), the DWARF3 F-box protein acts with the SL receptor DWARF14 as ...

متن کامل

Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may Perceive an Unknown Signal that is not Karrikin or Strigolactone

The α/β-hydrolases KAI2 and D14 are paralogous receptors for karrikins and strigolactones, two classes of plant growth regulators with butenolide moieties. KAI2 and D14 act in parallel signaling pathways that share a requirement for the F-box protein MAX2, but produce distinct growth responses by regulating different members of the SMAX1-LIKE/D53 family. kai2 and max2 mutants share seed germina...

متن کامل

Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.

Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. ...

متن کامل

SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis.

Abiotic chemical signals discovered in smoke that are known as karrikins (KARs) and the endogenous hormone strigolactone (SL) control plant growth through a shared MORE AXILLARY GROWTH2 (MAX2)-dependent pathway. A SL biosynthetic pathway and candidate KAR/SL receptors have been characterized, but signaling downstream of MAX2 is poorly defined. A screen for genetic suppressors of the enhanced se...

متن کامل

KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.

Karrikins are butenolide compounds released from burning vegetation that stimulate seed germination and enhance seedling photomorphogenesis. Strigolactones are structurally similar plant hormones that regulate shoot and root development, and promote the germination of parasitic weed seeds. In Arabidopsis, the F-box protein MAX2 is required for responses to karrikins and strigolactones, and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 27 11  شماره 

صفحات  -

تاریخ انتشار 2015